Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Añadir filtros

Base de datos
Tipo del documento
Intervalo de año
1.
Elife ; 112022 10 17.
Artículo en Inglés | MEDLINE | ID: covidwho-2145045

RESUMEN

Background: Epidemiological studies observed gender differences in COVID-19 outcomes, however, whether sex hormone plays a causal in COVID-19 risk remains unclear. This study aimed to examine associations of sex hormone, sex hormones-binding globulin (SHBG), insulin-like growth factor-1 (IGF-1), and COVID-19 risk. Methods: Two-sample Mendelian randomization (TSMR) study was performed to explore the causal associations between testosterone, estrogen, SHBG, IGF-1, and the risk of COVID-19 (susceptibility, hospitalization, and severity) using genome-wide association study (GWAS) summary level data from the COVID-19 Host Genetics Initiative (N=1,348,701). Random-effects inverse variance weighted (IVW) MR approach was used as the primary MR method and the weighted median, MR-Egger, and MR Pleiotropy RESidual Sum and Outlier (MR-PRESSO) test were conducted as sensitivity analyses. Results: Higher genetically predicted IGF-1 levels have nominally significant association with reduced risk of COVID-19 susceptibility and hospitalization. For one standard deviation increase in genetically predicted IGF-1 levels, the odds ratio was 0.77 (95% confidence interval [CI], 0.61-0.97, p=0.027) for COVID-19 susceptibility, 0.62 (95% CI: 0.25-0.51, p=0.018) for COVID-19 hospitalization, and 0.85 (95% CI: 0.52-1.38, p=0.513) for COVID-19 severity. There was no evidence that testosterone, estrogen, and SHBG are associated with the risk of COVID-19 susceptibility, hospitalization, and severity in either overall or sex-stratified TSMR analysis. Conclusions: Our study indicated that genetically predicted high IGF-1 levels were associated with decrease the risk of COVID-19 susceptibility and hospitalization, but these associations did not survive the Bonferroni correction of multiple testing. Further studies are needed to validate the findings and explore whether IGF-1 could be a potential intervention target to reduce COVID-19 risk. Funding: We acknowledge support from NSFC (LR22H260001), CRUK (C31250/A22804), SHLF (Hjärt-Lungfonden, 20210351), VR (Vetenskapsrådet, 2019-00977), and SCI (Cancerfonden).


Asunto(s)
COVID-19 , Estudio de Asociación del Genoma Completo , COVID-19/epidemiología , COVID-19/genética , Estrógenos , Hormonas Esteroides Gonadales , Hospitalización , Humanos , Factor I del Crecimiento Similar a la Insulina/genética , Polimorfismo de Nucleótido Simple , Testosterona
2.
Comput Intell Neurosci ; 2022: 7091476, 2022.
Artículo en Inglés | MEDLINE | ID: covidwho-1909908

RESUMEN

With the continuous development of computer science and technology, the level of medical image processing and analysis technology has been significantly improved. In order to further optimize the medical imaging technology and provide assistance for medical diagnosis and treatment, this study will explore the head CT image segmentation technology and three-dimensional reconstruction technology based on human anatomy, using two morphological operation methods of image expansion and image corrosion, as well as the triangulation method based on surface contour, Optimize CT image segmentation technology and three-dimensional reconstruction technology. The results show that the CT image segmentation technology based on human anatomy can obtain the more essential morphology and features of the target image, and significantly improve the image quality. The size of the threshold can have a certain impact on the 3D reconstruction effect and reconstruction time to a certain extent. The larger the threshold, the shorter the reconstruction time, but the worse the 3D reconstruction effect. This shows that the target image after fitting has a good reconstruction effect, but the threshold level should be kept at a low level. The head CT image segmentation technology and three-dimensional reconstruction technology based on human anatomy have good application effects and can be popularized and applied in clinical diagnosis and treatment.


Asunto(s)
Imagenología Tridimensional , Tomografía Computarizada por Rayos X , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Tecnología , Tomografía Computarizada por Rayos X/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA